
Written exam n°8

Duration : 2 h 30. The use of a calculator or calculating device is forbidden. Any affirmation must be justified.

I - Diffusion of a perfume (33% of the points)
After initially applying perfume locally on the skin in a surface 2x0 × L, we model here 1D diffusion of
perfume molecules in air. Let n(x, t) be the number of perfume molecules per volume of air. Due to slow
evaporation the deposit of perfume liberates perfume molecules within the air on top of the 2x0 × L surface.
We note α the constant number of perfume molecules added per unit of volume and per unit of time within
the air layer of −x0 ≥ x ≤ x0.
We note D the diffusion coefficient of perfume in air, and #”

j N(x, t) the diffusion flux density. We assume that
the plane (O, #”ey, #”ez) is Π+, that is plane of symmetry, for n and for #”

j N .

Q1. Define Fick’s law, then justify that # ”
jN(x, t) = jN(x, t) #”ex with jN(x, t) = # ”

jN(x, t). #”ex.
Q2. Establish rigorously the material balance for a layer of air between x and x + dx between t and t + dt,
first within x ∈ [−x0, x0], then for x ∈ R\[−x0, x0].
We now study the diffusion in steady-state.
Q3. Establish the expression of n(x), with 4 unknowns that we leave undetermined for now.
We note n(0) = n0, and in x = ±x0 there is no membrane that could constrain molecule movement.
Q4. State the boundary conditions in x = 0 and x = x0, to demonstrate rigorously the following :

if x ∈ [0, x0] n(x) = n0 − α
2D

x2

else if x ≥ x0 n(x) = n0 + α
2D

x2
0 − αx0

D
x

A typical bottle of perfume contains 50 mL of liquid perfume of molar mass M ' 100 g.mol−1 and volumetric
mass µ ' 103 kg.m−3. Such a bottle lasts about 6 months, for 2 sprays a day, each spray lasting around 5
hours before completely evaporating.
Q5. Establish an order of magnitude for α using the given data.
The diffusion coefficient of perfume within air is D ' 3 × 10−5 m2.s−1.
Q6. Estimate the time ∆t for perfume molecules to diffuse over 1 meter of air. Relate your result to everyday
life observations, and to other physical phenomenons.
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II - Scuba diving accident : growth of gas bubbles (67% of the points)

The 3 subpart of this problem are independent.

When scuba diving, the body is exposed to increasing hydrostatic pressure as depth
increases. At higher pressures, more gases dissolve within the living tissues. If a diver
then reaches the surface very quickly, gas trapped within the tissues does not have time
to diffuse back to the blood and lungs, and instead grows into gas bubbles that can
become mortal.
Throughout this study, we suppose that at equilibrium the concentration cN2, eq (in
mol/L) of dissolved N2 within a living tissue is proportional to the partial pressure
PN2 in N2 surrounding this tissue according to Henry’s law : cN2, eq = H × PN2 with
H = 6 × 10−4 mol.L−1.bar−1.

II.1 First estimation of the danger
Q7. Recall the approximate value of the molar fraction of N2 in air, then deduce the approximate value of
cN2, eq(z = 0) for atmospheric pressure P0 = P (z = 0).
Q8. Recall without any demonstration the hydrostatic pressure profile P (z) within water. Determine the
approximate value of cN2, eq(z0) with z0 = 30 m.
We imagine that the diver, initially at equilibrium at z=

0 30 m of depth, suddenly emerges at z = 0. The total
volume of blood of a human being is about V = 5 L.
Q9. Determine the amount (in moles) of N2 gas that appears within the diver’s blood if it instantaneously
reaches its new equilibrium. Using ideal gas law, convert this amount of N2 gas into a volume of gas at
atmospheric pressure, is this volume enough to obstruct a blood vessel ?

II.2 Avoid the accident : the slow diffusion of dinitrogen in living tissues
Usually gas bubbles do not emerge in the blood, which circulates very often through the lungs and thus adapts
quickly its concentration with the pressure P (z) within the lungs. Therefore we suppose that in blood for
each depth z the concentration in N2 is the one at equilibrium stated by Henry’s law : cN2, eq = 5 × 10−4

mol/L.

However, in tissues such as cartilage, diffusion limits the transport of N2 : it
takes time for it to diffuse and reach new equilibrium. Note that N2 is not
produced nor consumed by cartilage or any living tissue. We call n(x, t) the
number of gas N2 molecules per m3, and name D the diffusion coefficient of
N2 in cartilage.

Q10. By continuity of n(x) in 0 and L, determine the numerical values of n(0) and n(L).
Q11. Without any demonstration, express the differential equation that n(x, t) follows here for x ∈ [0, L].
We look for stationary solutions for n(x, t). The plane at x = L

2 is Π+ (a symmetry plane) for both n(x, t)
and #”

j N2 .
Q12. Demonstrate rigorously that n(x, t) can be written as :

n(x, t) = n(0) + Ae−q2
nDt sin(qmx) with qm = mπ

L
for m ∈ N and A an unknown.

Q13. Determine the only value for m that makes sense physically, and justify why by representing graphically
n(x,t) for different m.
At t = 0, the maximum of concentration in N2 within the cartilage cN2, eq,z=z0 = 2×10−3 mol/L. The diffusion
coefficient of N2 in cartilage is D = 2 × 10−9 m2.s−1 and L = 1 cm.
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Q14. Determine the numerical value of A, then define a characteristic time τ for the decay of this excess of
concentration in N2 within cartilage : how long should a diver typically take to reach the surface after diving
at 30 meters ?

II.3 Growth of dinitrogen bubbles in living tissues

We study an isolated bubble of pressure P0N2 and radius R(t). The evolution of
the radius R(t) of the N2 bubble is slow enough for the diffusion of N2 in the liquid
to be in steady-state. n is the number of dissolved molecules of N2 per m3 within
the living tissue(∼ water) n(r) −→

r→∞
n∞. D is the diffusion coefficient of the gas

in the liquid and Vn the molar volume of the gas, supposed to be constant.
To study R(t) we neglect surface tension and give the following law :
◦ Henry’s law : n(R) = HP0N2 with H = 3, 6 × 1022 kg−1.s2.m−2

In spherical coordinates for a scalar field n(r) the gradient and Laplacian are written as such :
−−−→
grad c = ∂c

∂r
−→er ∆c = 1

r

∂2

∂r2 (rc)

Q15. Determine n(r) using r,R, n(R) and n∞.
Q16. Using Fick’s law, determine the volume variation rate V̇ of the bubble per unit of time.
Q17. Show that along these assumptions the bubble’s radius follows :

dR

dt
= HDVnP0N2

R(t)

(
n∞

HP0N2

− 1
)

Here n∞ = 1.1 × 1027, T = 310 K, D = 2 × 10−9 m2.s−1, Rig = 8.3J.K−1.mol−1 and P0N2 = 0.8 bar.
Q18. Demonstrate that the bubble will indeed grow, then define and determine the value of the duration ∆t
for it to grow to R0 = 1 mm. Comment your result in regards of previous results for diffusion of dissolved
N2 in cartilage.
The diver suddenly reached the surface : the concentration of dissolved N2 initially remained the one at

equilibrium for z = z0 (before the diffusion of the II.2 significantly occurs), but the partial pressure P0N2 in
N2 dropped causing this rapid bubble growth.
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